ntjm.net
当前位置:首页 >> 1*22+2*32+3*42+……+n(n+1)2= >>

1*22+2*32+3*42+……+n(n+1)2=

1、可以用公式求和 n(n+1)=n²+n 1*2+2*3+3*4+……+n(n+1) =1+2²+3²+…+n²+1+2+3+…+n =n(n+1)(2n+1)/6+n(n+1)/2 =n(n+1)(n+2)/3 2、可以用裂项求和 n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/3 1*2+2*3+3*4+……+n(n+1) =[(1*2*3-0*1...

这是一个很有规律的数列求和 1*2*3=(1*2*3*4-0*1*2*3)/(4-0),括号里1*2*3是公因数,提出后剩下(4-0),把它除掉就是1*2*3了 2*3*4=(2*3*4*5-1*2*3*4)/(5-1), 同理 ... n*(n+1)(n+2)=[n*(n+1)(n+2)(n+3)-(n-1)n*(n+1)(n+2)]/[(n+3)-(n-1)] 分母都...

1*2+2*3+3*4+...n*(n+1) =1(1+1)+2(2+1)+3(3+1)+···+n(n+1) =1²+1+2²+2+3²+3+····+n²+n =(1+2+3+····+n)+(1²+2²+3²+···n²) =(1+n)n/2+n(n+1)(2n+1)/6 =n(n+1)/2[1+(2n+1)/3] =n(n+1)(n+2)/3 此题应用的...

证明:1×2+2×3+3×4+......+n(n+1) =(1×1+1)+(2×2+2)+(3×3+3)+......(n×n+n) =(1^2+2^2+3^2+......n^2)+(1+2+3+......n) =n*(n+1)*(2*n+1)/6+n(n+1)/2 =n(n+1)(n+2)/3

这个是有公式的。 公式:1²+2²+...+n²=n(n+1)(2n+1)/6 类似的公式还有: 1+2+...+n=n(n+1)/2 1³+2³+...+n³=[n(n+1)/2]² 1+3+...+(2n-1)=n² 以上都是高中常用的公式,特别是数列章节,会经常用到。

求1^2+2^2+3^2+...+n^2的值(答案n(n+1)(2n+1)/6) 方法一:利用立方差公式 n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)] =n^2+(n-1)^2+n^2-n =2*n^2+(n-1)^2-n 2^3-1^3=2*2^2+1^2-2 3^3-2^3=2*3^2+2^2-3 4^3-3^3=2*4^2+3^2-4 ...... n^3-(n-1)^3=2*n^2+...

#include #include using namespace std; int main() { int n, i, f; cin >> n; f = 1; for(i = 1; i

裂项法: 同乘以3后: 原式=1*2*3+2*3*3+3*4*3+....+(n-1)*n*3 =1*2*3+2*3*(4-1)+3*4*(5-2)+....(n-1)n*[(n+1)-(n-2)] =1*2*3+2*3*4-1*2*3+3*4*4-2*3*4+(n-1)n(n+1)-(n-2)(n-1)n =(n-1)n(n+1) 再除以3, 结果是(n-1)n(n+1)/3

你可以定义 int sum=0,n; 先初始化n的值,即给n赋值; 再运用for(i=1;i

设S=1+2+3+.....+(n-2)+(n-1)+n 倒过来是: S=n+(n-1)+(n-2)+.....+3+2+1 二式相加得: 2S=(n+1)+[2+(n-1)]+[3+(n-2)]+....+[(n-2)+3]+[(n-1)+2]+(n+1),一共有n项 即2S=n(n+1) 所以得:S=1+2+...+n=n(n+1)/2

网站首页 | 网站地图
All rights reserved Powered by www.ntjm.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com